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1. Overview 3. Method 4. Experimental Results
= Motivation: > Iterative Reconstruction Process = Qutperform SOTA Supervised Methods on OOD Data
Current unsupervised INR-based methods struggle with Initial Recon. (e.g., FBP) Final Recon. g et -
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* Method: An unsupervised framework “Spener - v zy

1. Utilize image domain prior with INR Sl g ' g
2. Integrate iterative framework to stabilize solution » Image Prior Embedding Neural Representation
» Results: Matched supervised methods in-domain data & p N

outperform at out-of-domain; Outperform INR-based
methods in noise robustness

= Contributions:
INR: Utilize explicit regularization for INR optimization
PnP: Integrate powerful solver to achieve data consistency
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In Iteration t: Solve Data Consistency & Prior Subproblems ’ il““““

2 . P re li m i na ri es FBPConvNet RegFormer SCOPE Spener (Ours)

a. Data Consistency Solving via Image Embedding INR « Supervised DL methods (FBPConvNet, RegFormer).

* Implicit Neural Representation for CT
P P z; 1 € R" * Unsupervised INR-based methods (ColL, SCOPE, our Spener).
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= QOutperform with INR Baselines on Low-Dose Settings
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_ 1) Sampling of a set of coordinates along any X-ray
= Plug-and-Play HQS for Solving Inverse Problem 2) Prediction of Intensity feeding the coordinates and image into network
A 3) Optimize network through minimizing the loss function
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[ Solve Data Consistency Subproblem ] rcR o
_ o v o b. Update Prior Image to Achieve Regularization
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. . . P Table 1. Effectiveness of Iteration in
[Solve Prior Subproblem with Denoiser D, ] Spener Optimization
\ Z; = D (Xt) 1) Feed all coordinates and last iteration recon image into network Strategy PSNR SSIM
2) Regularize the current recon image via pOWQI‘fU| denoiser w/o iteration 36.28+0.69 0.93424+0.0060
Reference 3) Update the prior image from the denoised recon image w/ iteration  37.35+0.54  0.94844-0.0062
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